Ribo-off rRNA Depletion Kit (Human/Mouse/Rat)

Catalog # N406

Version 5.1

Vazyme biotech co., ltd.

Introduction

The Ribo-off rRNA Depletion Kit (H/M/R) is designed to deplete rRNA (including cytoplasmic 28S, 18S, 5S rRNA, and mitochodrial 12S, 5.8S rRNA) from human, mouse, and rat total RNA preparations, while leaving mRNA and other non-coding RNA. This kit is suitable for both intact and degraded RNA samples (i.e. FFPE RNA). The obtained rRNA-depleted RNA can be used for analysis applications of mRNA and non-coding RNA (e.g. IncRNA).

Contents of Kit

Components	N406-01 (24rxn)	N406-02 (96rxn)	
rRNA Probe (H/M/R)	24 μΙ	96 µl	
Probe Buffer	72 μl	288 μΙ	
RNase H Buffer	96 μl	384 µl	
RNase H	24 μΙ	96 μl	
DNase I Buffer	696 μI	4 × 696 μΙ	
DNase I	24 μΙ	96 µl	
Nuclease-free Water	1 ml	4 ml	

Storage

All the components should be stored at -20℃.

Additional Materials Required

Magnetic Stand

100% Ethanol

Nuclease-free PCR Tube

VAHTS RNA Clean Beads (Vazyme, #N412) or Agencourt® RNAClean® XP Beads (Beckman Coulter, #A63987).

Application

Starting Materials: 0.1 µg-1 µg of human, mouse, or rat total RNA.

Protocol

1. Preparation of total RNA sample

1.1. Dilute 0.1 μ g-1 μ g of total RNA with 11 μ l of Nuclease-free Water in a Nuclease-free PCR tube and keep on ice.

2. rRNA/Probe hybridization

2.1. Prepare the following reaction solution in a Nuclease-free PCR tube:

rRNA Probe (H/M/R)	1 µl
Probe Buffer	3 µl
	- p.
Total RNA	11 µl
Total	15 µl

Mix by gently pipetting up and down for 10 times.

2.2. Collect the liquid to the bottom of the tube by a brief centrifugation. Put the sample into a PCR instrument and run the following program (Hot Lid Temperature: 105°C):

95℃	2 min
95-22℃	2°C 0.1°C /sec
22℃	5 min

3. Digestion with RNase H

3.1. Prepare the following reaction solution on ice:

3.1. Pr	epare the following reaction	n solution on ice:
	RNase H Buffer	4 μΙ
	RNase H	1 μΙ
	Products of Step 2.2	15 µl
	Total	20 μΙ

Mix by gently pipetting up and down for 10 times.

3.2. Place the sample in a PCR instrument and incubate at 37°C for 30 min (Hot Lid Temperature: 105°C).

4. Digestion with DNase I

4.1. Prepare the following reaction solution on ice:

DNase I Buffer	29 µl
DNase I	1 μΙ
RNase H Digested Products	20 µl
Total	50 µl

Mix by gently pipetting up and down for 10 times.

4.2. Place the sample in a PCR instrument and incubate at 37°C for 30 min (Hot Lid Temperature: 105°C). Collect the liquid to the bottom of the tube by a brief centrifugation. Put the tube on ice and immediately proceed to the next procedure.

5. Purification of Ribosomal-depleted RNA with VAHTS RNA Clean Beads

- 5.1. Suspend the **VAHTS RNA Clean Beads** thoroughly by vortexing, pipet 110 µl (2.2×) of beads into the RNA sample of **Step 4.2**. Mix thoroughly by pipetting fup and down for 10 times.
- 5.2. Incubate the sample on ice for 15 min to make the RNA bind to the beads.
- 5.3. Put the sample onto a magnetic stand. Wait until the soultion clarifies (about 5 min). Then carefully discard the supernatant without disturbing the beads.
- 5.4. Keep the sample on the magnetic stand, add 200 μ l of **freshly prepared 80% ethanol** to rinse the beads. **DO NOT re-suspend the beads!** Incubate at room temperature for 30 sec and carefully discard the supernatant without disturbing the beads.

Note: It is highly recommended to use a 10 µl pipette to remove the residual supernatant in this step.

- 5.5. Repeat Step 5.4.
- 5.6. Keep the sample on the magnetic stand, open the tube and air-dry the beads for 5 min-10 min.
- 5.7A. (**Option A**) If the Ribosomal-depleted RNA will be used for reverse transcription: Take the sample out of magnetic stand. Add 10.5 µl of Nuclease-free Water and mix thoroughly by pipetting for 6 times. Incubate at room temperature without shaking for 2 min. Then, put the tube back on the magnetic stand and wait until the soultion clarifies (about 5 min). Carefully transfer 8 µl of the supernatant to a new Nuclease-free PCR tube without disturbing the beads.
- 5.7B. (**Option B**) If the Ribosomal-depleted RNA will be used for RNA library preparation with VAHTS Total RNA-seq (H/M/R) Library Prep Kit for Illumina® (Vazyme, #NR603): Take the sample out of magnetic stand. Add 18.5 µl of Frag/Primer Buffer and mix thoroughly by pipetting up and down for 6 times. Incubate at room temperature without shaking for 2 min. Put the tube back on the magnetic stand and wait until the soultion clarifies (about 5 min). Carefully transfer 16 µl of the supernatant to a new Nuclease-free PCR tube without disturbing the beads.
- 5.8. The eluted Ribosomal-depleted RNA is now ready for reverse transcription or RNA library preparation. It is highly recommended to proceed to the next procedures immediately, rather than to store the RNA at -20°C.

Notes

- 1. To ensure the removal efficiency of rRNA, the RNA samples should be free of salt ions (i.e. Mg²⁺ or guanidine salts) and organic compounds (i.e. phenol and ethanol)
- 2. The DNase I treatment is to to remove trace amounts of DNA and thereby to avoid DNA contamination of DNA.
- 3. The yield of rRNA-depleted RNA depends on the quality of the starting RNA, the rRNA content in the sample, and the purification method used. The average yield rate is 3%-10%.
- 4. For RNA-Seq samples, to increase library complexity, it is recommended to use total RNA with an amout of > 100 ng as starting materials.

