Ribo-off rRNA Depletion Kit (Bacteria)

Catalog # N407

Version 8.0

Vazyme biotech co., ltd.

Introduction

The Ribo-off rRNA Depletion Kit (Bacteria) is designed to deplete rRNA (including 16S and 23S rRNA) from total RNA of Gram-positive and Gram-negative bacteria and to obtain mRNA and other non-coding RNA. This kit is suitable for both intact and degraded RNA samples (i.e. FFPE RNA) and can remove rRNA in total RNA of 1 µg - 5 µg. The obtained rRNA-depleted RNA can be used for analysis applications of mRNA and non-coding RNA (i.e. IncRNA) and other applications.

Contents of Kit

Components	N407-01 (12 rxn)	N407-02 (24 rxn)	
rRNA Probe (Bacteria)	24 μΙ	48 µl	
Probe Buffer	36 μl	72 µl	
RNase H Buffer	48 μl	96 µl	
RNase H	12 µl	24 μΙ	
DNase I Buffer	348 µl	696 µl	
DNase I	12 µl	24 μΙ	
Nuclease-free ddH2O	1 ml	2×1 ml	

Storage

All the components should be stored at -20℃.

Additional Materials Required

RNA Analysis: Agilent RNA 6000 Pico Kit (Agilent #5067-1513)

RNA Clean Beads: VAHTS RNA Clean Beads (Vazyme, #N412) or Agencourt RNAClean XP Beads (Beckman, #A63987)

Other Materials: Magnetic Stand, 80% Ethanol (freshly prepared using Nuclease-free ddH2O), Nuclease-free ddH2O, Nuclease-free PCR tubes, Low absorption EP tubes (Eppendorf, #022431021), Agilent 2100 Bioanalyzer, Thermocyler (PCR instrument), Magnetic stand.

Mechanism

Workflow

Protocol

1. Hybridization of RNA sample and probe

1.1. In a Nuclease-free PCR tube, dilute 1 μ g - 5 μ g of total RNA in 10 μ l or 11 μ l of Nuclease-free ddH2O. Then, prepare the following reaction solution:

	1 µg - 2.49 µg of Input RNA	2.5 μg - 5 μg of Input RNA	
rRNA Probe (Bacteria)	1 μΙ	2 μΙ	
Probe Buffer	3 µl	3 µl	
Total RNA	11 µl	10 μΙ	
Nuclease-free ddH2O	To 15 μl	To 15 μl	

Mix thoroughly by gently pipetting up and down for 10 times. Collect the liquid to the bottom of the tube by a brief centrifugation.

1.2. Put the sample into a PCR instrument and run the following program:

	Hot Lid, 105℃	On
RNA Denaturation	95℃	2 min
Probe Hybridization	From 95°C to 22°C	0.1°C / sec
Incubation	22°C	5 min
	4℃	Hold

- ▲ This step takes approximately 15 min 20 min, which may vary between different PCR instruments.
- ▲ Take all the necessary components out of the -20°C refrigerator and put them on ice before use.

2. Digestion with RNase H

2.1. Prepare the following reaction solution on ice:

RNase H Buffer	4 µl	
RNase H	1 µl	
Products of Step 1.2.	15 µl	
Total	20 μΙ	

Mix thoroughly by gently pipetting up and down for 10 times. Collect the liquid to the bottom of the tube by a brief centrifugation.

2.2. Load the sample in a PCR instrument and run the following program:

<u>'</u>		01 0	
	Hot Lid, 105℃	On	
RNase H Depletion	37℃	30 min	
	4℃	Hold	

- ▲ Take all the necessary components out of the -20°C refrigerator and put them on ice before use.
- 2.3. Collect the liquid to the bottom of the tube by a brief centrifugation. Put the sample on ice and proceed to the next procedure immediately.

3. Digestion with DNase I

3.1. Prepare the following reaction solution on ice:

DNase I Buffer	29 µl	
DNase I	1 µl	
RNase H Digested Products (Products of Step 2.3.)	20 µl	
Total	50 µl	

Mix thoroughly by gently pipetting up and down for 10 times. Collect the liquid to the bottom of the tube by a brief centrifugation.

3.2. Load the sample in a PCR instrument and run the following program:

	Hot Lid, 105℃	On
DNase I Depletion	37℃	30 min
	4℃	Hold

3.3. Collect the liquid to the bottom of the tube by a brief centrifugation. Put the sample on ice and proceed to the next procedure immediately.

4 Purification of Ribosomal-depleted RNA with VAHTS RNA Clean Beads

- 4.1. Suspend the VAHTS RNA Clean Beads thoroughly by vortexing, pipet 110 µl (2.2 ×) of beads into the RNA sample of Step 3.3. Mix thoroughly by pipetting up and down for 10 times.
- 4.2. Incubate the sample on ice for 15 min to make the RNA bind to the beads.
- 4.3. Put the sample onto a magnetic stand. Wait until the solution clarifies (about 5 min). Then carefully discard the supernatant without disturbing the beads.
- 4.4. Keep the sample on the magnetic stand, add 200 µl of 80% Ethanol (freshly prepared using Nuclease-free ddH2O) to rinse the beads. Incubate at room temperature for 30 sec and carefully discard the supernatant without disturbing the beads.
- 4.5. Repeat Step 4.4.
- 4.6. Keep the sample on the magnetic stand, open the tube and air-dry the beads for 5 min 10 min.
 - ▲ DO NOT re-suspend the beads when adding 80% ethanol to rinse.
 - ▲ It is highly recommended to use a 10-µl pipette to remove the residual supernatant in this step.
 - ▲ Avoid over dry in case of decreasing the recovery efficiency of RNA.
- 4.7-**Option A** (if the ribosomal-depleted RNA will be used for reverse transcription): take the sample out of magnetic stand, add 20 μl of Nuclease-free ddH₂O and mix thoroughly by pipetting for 6 times, and incubate at room temperature without shaking for 2 min. Put the tube back on the magnetic stand and wait until the solution clarifies (about 5 min), carefully transfer 18 μl of the supernatant to a new Nuclease-free PCR tube without disturbing the beads.
- 4.7-Option B (if the ribosomal-depleted RNA will be used for RNA library preparation with VAHTS Stranded mRNA-seq Library Prep Kit for Illumina® V2) (Vazyme, #NR612): take the sample out of magnetic stand, add 18.5 µl of Frag/Primer Buffer and mix thoroughly by pipetting up and down for 6 times, and incubate at room temperature without shaking for 2 min. Put the tube back on the magnetic stand and wait until the solution clarifies (about 5 min), carefully transfer 16 µl of the supernatant to a new Nuclease-free PCR tube without disturbing the beads for library preparation.
 - ▲ Recommended fragmentation condition: 85°C, 6 min. Recommended size-selection condition: 0.65 × / 0.1 ×.
 - ▲ Recommended amplification cycle numbers: 15.
- 4.8. The eluted Ribosomal-depleted RNA is now ready for reverse transcription or RNA library preparation or storage at -20°C.
 - ${\color{blue}\blacktriangle}$ It is highly recommended to proceed to the next procedures immediately.

Appendix

Note: The species below that have been tested can be applied to Ribo-off rRNA Depletion Kit (Bacteria). But this kit is not limited to the below species.

	Ribo-off rRNA Depletion Kit (Bacteria) Species Compatibility:					
1	Acanthamoeba	39	Metallosphaera sedulla	77	Toxoplasma gondii	
2	Acinetobacter baumanii	40	Methanobacterium	78	Aeromonas hydrophila	
3	Actinoplanes spp	41	Methanococcus maripaludis	79	Xanthomonas campestris	
4	Amoebophilus asiaticus	42	Methanolobus psychrophillus	80	Janthinobacterium svalbardensis	
5	Arthroabcter arilaitensis Re117	43	Methanoseata concilii	81	Lactococcus lactis	
6	Azotobacter vinelandii	44	Microcystis aeruginosa	82	Corynebacterium glutamicum	
7	Bacillus subtilis	45	Moraxella catarrhalis	83	Burkholderia	
8	Bacteroides vulgatus	46	Mycobacterium tuberculosis	84	Bacillus cereus	
9	Brucella abortus	47	Mycobacterium	85	Escherichia coli	
10	Bartonella henselae	48	Paratuberculosis	86	Streptomyces coelicolor	
11	Borrelia burgdorferi	49	Mycoplasma gallisepticum	87	Vibrio alginolyticus	
12	Brevibacterium aurantiacum	50	Mycoplasma mycoides	88	Azotobacter sp.	
13	Burkholderia pseudmoallei	51	Nitrospira	91	Staphylococcus aureus	
14	Campylobacter jejuni	52	Pantoea agglomerans	92	Pseudomonas aeruginosa	
15	Chromohalobacter	53	Prevotella copri	93	Lactobacillus plantarum	
16	Clostridium difficile	54	Photorhabdus	94	Bacillus licheniformis	
17	Clostridium ljungdahlii	55	Porphyromonas gingivalis	95	Rhodococcus ruber	
18	Corynebacterium glutamicum	56	Prochlorococcus marinus	96	Klebsiella pneumoniae	
19	Corynebacterium casei	57	Xanthomonas campestris	97	salmonella	
20	Cyanobacteria	58	Pseudomonas putida	98	Vibrio cholerae	
21	Vibrio parahemolyticus	59	Pseudomonas syringeae	99	Listeria monocytogenes	
22	Dinoroseobacter shibae	60	Ralstonia solanacearum	100	Cronobacter sakazakii	
23	Eubacterium rectale	61	Rhizosphere (soil bacteria)	101	Pseudomonas fluorescens	
24	Erwinia amylovora	62	Rhodobacter sphaeroides			
25	Fibrobacter succinogenes	63	Rhodococcus			
26	Francisella	64	Roseobacter denitrificans			
27	Geobacter metallireducens	65	Salmonella typhimurium			
28	Hafnia alvei HA	66	Sodalis glossinidius			
29	Haemophilus ducreyi	67	Staphylococcus aureus			
30	Haloferax volcanii DS2	68	Streptococcus			
31	Helicobacter pylori	69	Streptomyces coelicolor			
32	Ideonella spp	70	Sulfolobus acidocaldaris			
33	Lactobacillus plantarum	71	Sulfolobus islandicus			
34	Lactococcus garvieae	72	Synechococcus			
35	Lactococcus lactis	73	Thermococcus			
36	Listeria monocytogenes	74	Themus thermophilus HB27			
37	Marinobacter hydrocarbonclasticus	75	Thermotoga maritime			
38	Mesotoga	76	Thermovibrio spp			